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A systematic approach to generating accurate neural network
potentials: the case of carbon
Yusuf Shaidu1,2, Emine Küçükbenli 1,3✉, Ruggero Lot 1, Franco Pellegrini 4, Efthimios Kaxiras3,5 and Stefano de Gironcoli 1,6✉

Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials
modeling. Artificial neural network-based approaches for generating potentials are promising; however, neural network training
requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-
consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an
accurate, inexpensive, and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for
carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite, and
graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.
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INTRODUCTION
The state-of-the-art theoretical framework for computing material
properties of crystals at their ground state is density functional
theory (DFT)1,2. DFT allows to describe the total energy as a
functional of electron density, E ρ½ �, for a given atomic configuration
{R}, by taking advantage of the conjugate relationship between the
electrostatic potential of the nuclei V({R}), and the ground-state
electron density ρ. By solving the expensive quantum mechanical
equations that result from this definition for electrons, DFT outlines a
path to determine the total energy, the forces on each atom, the
stress due to crystal structure, and several other ground-state
properties of materials. Yet the cost of solving the quantum
mechanical equations, as well as having to work with the extensive
electronic wavefunctions and density, hinders the application of this
method to systems beyond a few thousands of atoms.
A way to reduce the computational cost lies in the realization

that the same conjugate relationship between ρ and V guarantees
that a functional exists, which maps the electrostatic potential of
the nuclei to the total energy, hence it is possible to describe
ground-state properties as a functional of the positions of atoms
in the structure, without having to work explicitly with the
electron density. Yet, the exact form of such a functional is
unknown. One approach to approximate this unknown functional
is using artificial neural networks (ANNs). ANNs and in general
machine learning techniques have been shown to yield reason-
ably accurate functional approximations for a wide range of
applications, and have already been adopted with success to
some material science problems3–15.
ANNs can be seen as an attractive alternative to the classical

approach for constructing interatomic interaction models (also
known as force fields (FFs)) where physical intuition is used to fix
the form of the approximate functional for E[V({R})]. While
physically meaningful forms can describe the interatomic interac-
tion in a compact way, with only few parameters to be fitted, the
rigidity of the functional form reduces the predictive power of this
method in exploratory studies. In particular, for highly

polymorphic materials such as carbon, where several different
bonding types and structures exist, the lack of transferability of a
model from one structure to another results in many different
interaction models, each with a limited applicability. For example,
among the several empirical FFs for carbon, the non-reactive,
short range, bond-order-based Tersoff16 model can describe
dense sp3 carbon structures while a highly parametric reactive
force field (ReaxFF)17 that explicitly includes long-range van der
Waals (vdW) interactions and Coulomb energy through charge
equilibration scheme18 is needed for structures with sp2 hybridiza-
tion. Furthermore, even though these empirical FFs give a
qualitative understanding of materials properties, they are
quantitatively inaccurate when compared to both ab initio
methods and experiments19–22.
Interatomic interaction models based on ANNs do not have a

fixed functional form beyond the network architecture, and their
parameters are fitted to vast amounts of ab initio quantum
mechanical data in the hope of assimilating the physics of the
system into the parametrization. Hence the transferability restraint
of classical FFs, that is due to their rigid form, is traded for a
transferability challenge in the case of neural networks due to the
(lack of) variety and completeness in the training set. To address this
challenge of generating truly transferable ANN interatomic interac-
tion models, training data must be obtained from an efficient and
thorough sampling of the potential energy landscape. Such
sampling of the very rugged and high dimensional landscape with
ab initio electronic structure tools is a formidable challenge.
In this work, we integrate evolutionary algorithm (EA) with

molecular dynamics (MD) and clustering techniques in a self-
consistent manner to sample the potential energy landscape and
obtain data with high variability. The workflow we introduce
extends the training data iteratively, similar to other active
learning approaches that previously appeared in literature19,23–26.
Unlike these methods that aim at constructing an optimal dataset
for a specified part of the potential energy landscape, our
workflow targets an unbiased training dataset, which is necessary
for increased transferability expected of a general purpose
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potential. Moreover, for reliable materials modeling, it is crucial to
have indicators that signal when the limit of transferability is
crossed. We address this aspect of ANN models by studying the
relationship between data variability and transferability of the
trained network via unsupervised data analysis. We demonstrate
the performance of the approach highlighted above on the
challenging example of crystalline and amorphous carbon
structures.
This study is a continuation of similar efforts in the literature: the

first ANN interaction model for elemental carbon was developed
in 2010 by Khaliullin et al.19 to study graphite–diamond co-
existence. The network was trained on an adaptive training set,
where the starting configurations were manually selected from
randomly distorted graphite and diamond phases, relaxed under a
range of external pressures (from −10 to 200 GPa) at zero
temperature. Then, configurations for new training data were
obtained using this model in finite temperature MD simulations,
which in turn were used to refine the network, until a self-
consistency was reached in the prediction error on the new
structures. More recently in 2019, a hybrid model, where an ANN
potential for the short-range interaction is supplemented with a
theoretically motivated analytical term to model long-range
dispersion, has been developed in order to address the properties
of monolayer and multilayer graphene, with encouraging
results22. As we will demonstrate in this work, ANN models such
as these, built on data sampled solely from a limited part of the
potential energy landscape can, however, be highly non-
transferable. This transferability challenge for carbon has been
observed with kernel-based machine learning models as well.
In 2017, a kernel-based model, specifically, a Gaussian

approximation potential (GAP), was constructed21 using data
from MD melt-quench trajectories of liquid and amorphous
carbon, to study amorphous structures. Motivated from its non-
optimal behavior on crystalline phases, authors developed

another GAP model with a specialized training data obtained via
MD, for graphene27. It is worthwhile to note that recently, a
strategy combining kernel-based model generation with crystal
structure prediction was suggested by Bernstein et al.28. Since
computational cost for training or evaluation of a kernel-based
model grows with the training set, however, this approach is
suitable for small scale configuration space sampling. Alterna-
tively, a sparsification approach, such as the one based on
clustering recently proposed in ref. 29, can be used. In comparison,
computational cost of neural networks is independent of the size
of the training dataset, a feature that is exploited in the current
study for accurate prediction of elastic and vibrational properties.
It should be mentioned that regression-based machine-learnt
potential models other than GAP also exist, e.g., spectral neighbor
analysis potential (SNAP)8 and moment tensor potential (MTP)30. A
recent work comparing them concludes GAP to have the highest
accuracy, but also the highest computational cost, increasing with
the size of the training dataset31. SNAP and MTP use lower cost
regression strategies to correlate the local atomic environment
with its contribution to the total energy.
In this work we use a systematic approach to construct a highly

flexible and transferable neural network potential (NNP) and
demonstrate its application to the development of a general NNP
for carbon. We compare its performance with respect to other
potential models previously optimized for specific phases and
discuss the implications of our results for the trade-off between
transferability and specialization.

RESULTS
Self-consistent training and validation
The NNP is constructed following the self-consistent approach
sketched in Fig. 1. This recursive data-creating and fitting cycle
starts with a trial FF, which is used to generate an initial set of

Fig. 1 The self-consistent scheme. The initial step to start the process (yellow arrow) can be performed with a classical force field as shown
here, or any comprehensive dataset of structures such as the ones in Aflowlib72, Materials Genome Initiative73, or Nomad74 repositories can be
used to generate the first neural network potential model (blue triangle) to be refined through the self-consistent cycle. Once an initial
potential model is chosen, evolutionary algorithm enables a diverse set of structures to be sampled. The following clustering-based pruning of
structures further ensures that no single polymorph biases the dataset, i.e., at each step only novel structures (red and blue disks for the
particular step highlighted above) are to be considered, further refined, and added to the dataset. The subsequent MD simulations sample the
potential energy surface of each polymorph. Finally, DFT calculations performed on a subset of MD-sampled structures are added to the ab
initio dataset obtained thus far. The ab initio dataset augmented this way is then used to train the next neural network potential model (a
darker blue triangle), starting the next cycle of the self-consistent scheme until no new structures are found by the evolutionary algorithm.
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configurations via EA. In the absence of an established FF model
for a new material, rough approximations such as Lennard–Jones
or low-cost DFT approximations can be used with small unit cells
for the very first iteration. EAs are commonly used in crystal
structure prediction studies as they allow efficient sampling of the
configuration space. Their success in thorough sampling is
demonstrated by their ability to predict new crystal structures
before the experimental observation32,33. As the exploration of the
configuration space continues, a single-point DFT calculation is
performed on each distinct polymorph generated by EA. These
structures are then clustered using a distance measure. From each
cluster, a representative example is manually selected and a
classical MD simulation at a given pressure and temperature range
is performed. The additional MD simulation step allows the
sampling of the whole neighborhood of the equilibrium config-
uration for each polymorph, resulting in accurate prediction of
structural properties for every polymorph. The dataset obtained
this way is used to train a neural network model. The trained NNP
is then used for starting a new iteration of the self-consistent
cycle. This increases the training set diversity, by preventing the
energetically favorable structures that are easily accessed by EA
from dominating the whole training set. The iterative procedure
highlighted above is repeated until no new structures are found.
While iterative expansion of training set is not a new idea, our

implementation pushes its limits in diversity and balance: we use a
full EA to sample configurations, without anchoring the search in
any known polymorph or rigid transformations between poly-
morphs as in refs. 25 or 26. This makes our method applicable to
materials with unexplored phase space and prevents any bias
toward known phases. We then use clustering, which allows to
achieve a balanced set despite the tendency of EA to sample
stable configurations more often. Finally, starting from a
representative configuration for each cluster, we perform MD
simulations so that equilibrium properties of every polymorph are
well described independent of their stability with respect to the
ground state. We refrain from using active learning methods that
depend on network agreement (as in ref. 23) as network prediction
errors are not guaranteed to be uncorrelated, e.g., two networks
may agree on the wrong result, especially if under-parametrized.
We also refrain from expanding the training set with structures
obtained solely through MD trajectories as in ref. 34, because of
the risk of missing significant polymorphs that would only be
sampled rarely, and with decreasing frequency, i.e., requiring
longer and longer MD runs to run into significant additions to the
dataset. Instead, a coherent integration of EA, clustering and MD
together yields an unbiased, balanced, and diverse dataset.
Further details of the self-consistent training used in this work

are given in “Methods” and the expansion of the dataset explored
at each step is given in the Supplementary Fig. 1.
The performance of an NNP at each self-consistent loop is

evaluated during training via the validation scheme. Figure 2 shows
the evolution of NNP energy accuracy on the training and
validation set as a function of training steps at each self-
consistent iteration (Fig. 2a–c). The training root-mean-square error
(RMSE) corresponds to the instantaneous RMSE computed on the
elements of the batch considered at that training step while
the validation RMSE is computed on all the configurations in
the validation set. The RMSE on the validation set agrees with the
training RMSE throughout the training, an indication that the model
does not overfit to the training dataset. The analysis of the force
prediction error at different stages of training gives similar results
and can be found in the Supplementary Fig. 2. The increase in
energy and force RMSE from iteration 1 to 3 is a result of the
increase in the diversity of atomic environments. At each self-
consistent iteration, the diversity of the dataset increases as new
structures are explored (see Table 1), while the number of
parameters of the network, therefore its capacity, is kept fixed. It
is worth noting that the prediction error is not distributed according
to a Gaussian distribution function but a fatter-tailed one (see Fig.
2d). Therefore, while the RMSE given here is a good measure to
compare training and validation error with one another, it
overestimates the average NNP prediction error in general.
To demonstrate how the general accuracy of the NNPs is

changing with each iteration, we check their performance on a
dataset of 197 distinct carbon structures. These structures were
obtained by Deringer and co-workers35 via random search of
crystal structure of carbon with a GAP developed for liquid and
amorphous carbon systems21 and are distributed online36. They

Fig. 2 The evolution of the distribution of error in energy prediction. The RMSE in prediction of per atom energy for potentials trained at
first, second, and third iteration of the self-consistent cycle is given in a–c, respectively. The blue lines are the RMSE on a given batch of 128
configurations during training. The networks are evaluated during training on all the validation set of sizes ≈3000, ≈5200 and, ≈12000
configurations for first, second, and third iterations, respectively (red dots with lines as guide to eye). The final training and validation RMSE
are reported in Table 1. d Error distribution for the validation dataset at third iteration. The black dashed line is a normalized Gaussian fit,
resulting in an RMSE of 11.3 meV, clearly failing to fit the fat-tailed distribution. The error distribution of energy and force prediction for all
iterations is given in Supplementary Fig. 3.

Table 1. Training and validation RMSE.

Iteration Dataset size εtrainE εvalE εtrainF εvalF

1 15,841 6.8 6.8 0.14 0.14

2 30,815 17.1 20.0 0.19 0.22

3 60,133 22.0 22.1 0.26 0.27

For each iteration we report the RMSE in energy on training (εtrainE ) and
validation set (εvalE ) in eV/atom, and the RMSE in the cartesian components
of the force vector for training (εvalF ) and validation set (εvalF ) in eVÅ−1. The
training RMSE is the average over the batch RMSE of the last 2500 training
steps, while the validation RMSE is evaluated over the entire validation set
with the NNP obtained at the last training step. The energy (force) mean
absolute error on the validation set is 4 (0.09), 12(0.12), and 14(0.16) meV/
atom (eVÅ−1) for first, second, and third iteration, respectively.
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represent 197 different crystal configurations of carbon, classi-
fied according to the topology of the carbon network. For
consistency, their energies are re-calculated with the same DFT
parameters as explained in “Methods”. Figure 3 shows the
energy ranking as predicted by NNP, GAP, Tersoff, and ReaxFF. It
can be seen that the NNP accuracy gets better with each
iteration. The third iteration NNP accuracy agrees remarkably
well with DFT results and performs better than all the other
methods tested. It is noteworthy that the final NNP carries no
signature of the ReaxFF used in the initial step to explore the
configuration space. Both classical potentials, Tersoff and
ReaxFF, perform very poorly compared to machine-learnt ones,
and the NNP outperforms GAP results published in refs. 21,35,
albeit GAP was fitted on ab initio data obtained with local

density approximation (LDA) exchange-correlation functional37.
For fair comparison, we train a new NNP, using the same training
dataset structures obtained via the self-consistent procedure,
but using LDA functional. This potential, referred as NNP-LDA,
performs similarly to the NNP highlighted in this work, and
similarly outperforms all the other potentials. In the rest of the
work, the results denoted with NNP refer to the potential that is
trained with the rVV10 functional unless otherwise specified.

Structural and elastic properties
In this section, we discuss the performance of the NNP on the
structural and elastic properties of select carbon polymorphs,
namely, diamond, graphite, and graphene (see Tables 2–4). The
equilibrium lattice parameters are obtained by minimizing the
total energy until the force components on each atom are lower
than 26meVÅ−1 for both DFT and NNP simulations. We also
include results obtained with Tersoff potential, as well as other
DFT and machine learning studies in literature.
In the case of diamond, all machine learning methods agree

reasonably well with the DFT results they were trained with, both
for the equilibrium volume and elastic constants. The largest
deviation is seen in C12 prediction with GAP with 24% relative
error. For all properties tested, the predictions of NNP of the
current study is within a relative error of 5% with respect to DFT. It
should be noted that the variation between DFT studies employ-
ing different exchange-correlation functionals is larger than the
difference between machine-learnt models and the DFT results
they are trained to reproduce. Tersoff potential, although it
predicts the equilibrium volume well, fails to predict the C44.
In the more challenging case of graphite, C11 and C12 relate to

the in-plane elastic properties while C33 probes the relationship
between strain and stress between the planes, which are held
together by vdW interactions. C13 and C44 couple the strong in-
plane interaction with the weak out-of-plane ones, namely C13 can
be seen as a measure of interlayer dilation upon layer compres-
sion, and C44 as a measure of response to shear deformation. The
performance of the NNP on prediction of graphite elastic
constants is aligned with this overview: for all potentials reported
in Table 3, in-plane lattice parameter and elastic constants are
better predicted than the ones that relate to out-of-plane
interaction, indicating that more data or better training is needed
to describe these more delicate properties. Yet it is encouraging
that the general purpose NNP of the current work performs at
least as well as other NNPs from literature that were developed
with a focus on vdW systems such as graphite and multilayer
graphene. In the “Discussion,” we discuss how focusing on
particular system could further improve on these predictions.

Fig. 3 Prediction of energy ordering of carbon structures. The
energy ordering predicted by NNP is compared to DFT and other
models for 197 distinct carbon structures reported in ref. 35.
a Prediction performance of NNP at different iterations of the self-
consistent cycle visible improves. b Prediction performance of
GAP21, reactive force field (ReaxFF)75 and Tersoff16 models is
reported alongside the final NNP model (blue line). For comparison,
we train a new model with LDA exchange-correlation functional,
named as NNP-LDA (red line). The neural network potentials for the
two functionals overlap for the majority of the structures, as do the
DFT results (see the Supplementary Fig. 4). Further analysis of
prediction error in energy (instead of ranking) and the analysis of
similarity between this dataset and the one used in NNP generation
is reported in Supplementary Fig. 5.

Table 2. Elastic properties of diamond.

Property NNP DFT GAPa DFTa NNPb DFTb Tersoff16 Exp64 Exp65

a (Å) 3.576 3.584 3.539 3.532 3.569 3.570 3.566 – 3.567

B0 (GPa) 431 425 438 466 434 439 426 442 445

C11 (GPa) 1054 1044 1090 1101 1016 1056 1074 1079 (5) 1080

C12 (GPa) 119 116 112 148 142 130 102 124 (5) 127

C44 (GPa) 542 547 594 592 580 567 641 578 (2) 576

All machine-learnt potentials reproduce their reference DFT lattice parameter with <1% relative error. When the comparison extends to elastic constants and
bulk modulus, however, only the NNP described in this work shows a consistently close agreement between DFT and the potential model, <3% relative error,
the range of variation also observed between two different experiments. Energy as a function of volume is given in the Supplementary Fig. 6.
aReference21.
bReference19.
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Vibrational properties
Phonon dispersion relations give a complete picture of the elastic
properties of a material, and reproduction of the dispersion
relations obtained via DFT is a tight accuracy criterion on model
potentials. Here we examine the performance of NNP through its
prediction of phonon dispersion in the case of diamond and
graphene, as a function of lattice parameter, up to a 1% deviation
from the equilibrium structure. This is a relevant range for thermal

expansion of these materials as, for instance, the change in lattice
parameter of diamond at temperatures up to 2000 K is found to
be below 1%38. Similarly, thermal expansion increases graphene
lattice parameter only within 1% at temperatures up to 2500 K39.
The predictions of NNP for phonon dispersion of diamond and

graphene are depicted in Fig. 4. There is an overall good
agreement between NNP and DFT in the case of diamond. In
the case of graphene, there is a slight disagreement for the
transverse optical mode around K point. This is the same trend
observed in other machine-learnt potentials22,27 and likely the
result of electronic structural properties associated with this
special point coupling with the lattice vibration. For both
structures, the predicted phonon frequencies reduce when the
crystal expands and increase when it is compressed, as expected.
An exception to this is the soft flexural mode of graphene close to
Γ point. The instability of graphene upon compression can be seen
via small imaginary frequency of this mode (shown as negative).
This feature is predicted with DFT and is successfully reproduced
with NNP, pointing at the capacity of NNP in predicting important
structural stability indicators.
Phonon dispersion of graphite, shown in Fig. 5 displays

negative frequencies for low wave vectors close to Γ, along the
perpendicular direction to the graphene plane. These phonon
modes are particularly soft and are very sensitive to the level of
accuracy of the forces predicted by NNP. We verify this hypothesis
with an alternative loss function for NNP training, one that
minimizes the relative force error rather than the absolute one
used so far (see “Methods”). With a loss function that is based on
relative error, configurations with small forces impact the NNP
parameter minimization more strongly. We retrain the NNP
starting from the previously optimized parameters and report
graphite phonon dispersion obtained with the retrained NNP in
Fig. 5b. It is evident that this approach can improve the NNP
prediction for structures with small forces, e.g., close to
equilibrium conditions. Phonon dispersions for diamond and
graphene obtained with this NNP are given in Supplementary Fig.
7, and demonstrate that the general quality of the NNP is slightly
modified and mostly for the high frequency modes. Further tuning
of retraining parameters and loss function can be used as a way to
achieve higher accuracy in the desired range of energy and force
distributions.
An alternative approach that is commonly used in literature for

improving NNP prediction is to bias the training set with the
configurations for a certain polymorph. To show the effect of this
approach, we train the NNP model from scratch this time using a
biased dataset with structures from the close neighborhoods of
diamond or graphite only. The results reported in Fig. 5c show
that this approach indeed allows to reach a better agreement with
DFT and there are no imaginary phonon frequencies. However, as
it will be further examined later (see Discussion), while this NNP
model predicts well properties of configurations around its
reference, i.e., diamond or graphite, it is found to be highly non-
transferable to other regions of the potential energy surface of
carbon.

Amorphous carbon structures
Last, we test the NNP in its ability to construct amorphous carbon
structures in a range of densities from 1.5 to 3.5 g cm−3 generated
via the melt and quench method following the steps highlighted
in ref. 21. We start from a 216 atoms simple-cubic simulation cell
and randomized velocities at 9000 K and perform MD simulation
first at 9000 K with Nose–Hoover thermostat40 for 4 ps, followed
by another at 5000 K for 4 ps, then a fast exponential quench to
300 K at a rate of 10 K fs−1 (total duration ~0.5 ps), and finally for
4 ps we let the system evolve with the thermostat fixed at 300 K.
The radial distribution function (RDF) of liquid and amorphous

phases are given in Fig. 6a. The liquid is less ordered than the

Table 3. Elastic properties of graphite.

Property NNP DFT NNPa DFTa hNN-Gr bx DFTb Experiment

a (Å) 2.471 2.471 2.467 2.467 2.467 2.466 2.464c, 2.463d

c (Å) 6.732 6.719 6.688 6.815 6.804 6.800 6.712c, 6.712d

B0 (GPa) 48 40 48 37 – – 36 (11)c

C11 (GPa) 1053 1048 1080 1069 978 1080 1060 (20)e,
1109 (16)c

C12 (GPa) 197 182 179 162 177 162 180 (20)e,
139 (36)c

C13 (GPa) −23 −5 0 −4 −67 −5 15 (5)e, 0 (3)c

C33 (GPa) 57 43 52 40 40 33 37 (10)e,
39 (7)c

C44 (GPa) −5 4 7 5 1.79 3.36 0.27e, 5 (3)c

C66 (GPa) 428 433 – – – – 485 (11)c

Here we report the lower bound for the bulk modulus using Reuss average,
i.e., 1/B0≡ s11+ s22+ s33+ 2(s12+ s23+ s31). The robust intraplanar struc-
tural features of graphite is captured well by all machine-learnt potentials
while the weaker interplanar interaction and, in particular, elastic proper-
ties that couple the two, are more challenging to capture. This is true even
for the hybrid potential hNN-Gr of ref. 22 where the distance dependence
of the long-range interaction is manually set to r−6 and the potential is
tailor-fit to describe multi-graphene systems. Differences between DFT
references are of similar magnitude as the differences between NNP and
DFT. Energy as a function of volume is given in the Supplementary Fig. 6.
aReference19.
bReference22.
cReference66.
dReference67.
eReference68.

Table 4. Elastic properties of graphene.

Property NNP DFT hNN-Gr ax DFTa Tersoff16 Experiment

a (Å) 2.470 2.470 2.467 2.466 2.530 2.46b

ν 0.244 0.173 0.197 0.149 −0.158 –

E (GPa) 967 1015 1021 1060 1216 1015(149)c, 2400
(400)d

C11(GPa) 1028 1047 1062 1084 1247 –

C12 (GPa) 251 181 209 161 −197 –

The graphene 2D elastic constants were computed with the normalized 3D
stress as σ2D(ϵ)= E(ϵ)/A0 at a given strain of ϵ, where E(ϵ) is the total energy
at ϵ and A0 ¼

ffiffiffi
3

p
a2=2 is the area of graphene plane. E is the Young

modulus and ν is Poisson’s ratio. The elastic constant is converted to bulk
properties in GPa by dividing by the interlayer distance c/2 of graphite
reported in Table 3 or in respective experimental reference. Both machine-
learnt potentials similarly overestimate the Poisson’s ratio and under-
estimate the Young’s modulus with respect to their DFT references.
Differences between DFT references are of similar magnitude as the
differences between NNP and DFT. Energy as a function of volume is given
in the Supplementary Fig. 6.
aReference22.
bReference69.
cReference70.
dReference71.
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amorphous configurations at all densities, for all potentials
considered. In ref. 21, it was shown that both DFT and GAP have
a non-zero first minimum for the liquid phase at about 1.9Å,
which is not properly described by the screened Tersoff
potential41. Similarly, the NNP of this work captures the non-
zero first minimum in the liquid phase while the original Tersoff
potential does not. In the case of the amorphous phase,
historically one of the first validation cases for the Tersoff
potential, the agreement is overall better. A more detailed
comparison of RDF reported in ref. 21 and experiments is given
in the Supplementary Fig. 8 and shows that NNP can successfully
reproduce peak position and width across the densities
considered.
In order to quantify the short-range order of amorphous

structures, we calculate the sp3 concentration by computing the
fraction of carbon atoms with at least four neighbors within a
1.85Å radius. In Fig. 6b, we show the behavior of this quantity as a
function of density, comparing with the results of ref. 21 and those
obtained with regular and screened Tersoff potentials41. All
methods underestimate the experimental observations yet show
a similar general trend with density.
There are quantitative differences among the predictions of

theoretical models, in particular, the difference between NNP and
GAP predictions are more significant at medium and low densities.
This may be attributed to the fact that the DFT dataset used to
construct the GAP potential is built with LDA, while in this study
the DFT dataset for NNP is built with an accurate exchange-
correlation functional that includes vdW interaction from first
principles. In the low density region, vdW interactions allow
bonding beyond the typical sp3 bond length, such that low energy
configurations can be constructed with less sp3 and more sp2

bonds; while at high densities and at shorter length scales, vdW
interactions are of lesser significance. This is more evident as we
compare the sp3 count predicted with NNP-LDA as it agrees more
closely with the GAP result, revealing the role of the underlying
DFT reference in the prediction of the properties of amorphous
materials with machine-learnt potential models.
The bonding character between atoms strongly affects the

elastic properties of materials. Hence, comparing the elastic
properties as observed by experiments with those predicted by
theory is another way of assessing the theoretical prediction of sp3

count in amorphous structures. In order to do that, we first find
the metastable configurations closest in the phase space to the
amorphous structures examined so far, by further quenching the

dynamics from 300 to 0 K, and then performing geometry
relaxation until the force components on atoms are below
1mRy bohr−1 at fixed volume. Figure 6c shows the Young’s
modulus of these metastable amorphous structures as a function
of density. The agreement with the experiment is remarkable,
hinting that the discrepancy in theoretical and experimental sp3

count seen in Fig. 6b might stem from an inconsistency in
definitions between theory and experiment, i.e., the neighbor
count within 1.85Å used in theory underestimates the experi-
mentally measured value that is obtained via comparison of
electron energy-loss spectroscopy peak area to graphitized
carbon42,43.
We emphasize that the NNP was not constructed specifically for

the description of amorphous C, nor did it include amorphous or
melt structures hand-picked to represent these configurations.
Despite this, the self-consistent approach yields an NNP, which
describes these structures well at all volumes considered,
validating successful extrapolation of the potential beyond the
training set (see Supplementary Fig. 9 for energy analysis of liquid
and amorphous structures compared to the training set).

DISCUSSION
The accuracy of a neural network model is often measured by the
distribution of the prediction error on a test dataset, in particular
via mean and standard deviation of error. But as is the case with
training sets, test sets are also not standardized between studies.
Therefore the accuracy of potentials tested on different datasets
cannot be compared. Here we study the effect of the training and
test sets on the apparent accuracy of networks, and measure the
impact of these sets on the transferability of NNPs.
For every configuration in a dataset, we first define its Euclidean

distance from a reference atomic environment (e.g., cubic
diamond, graphite). The distance between the reference config-
uration α and a given configuration β is defined as:

dαβ ¼ 1
2

1
Nat
β

XNat
β

i¼1

jgα � gi
βj2

0
@

1
A

1=2

(1)

where g ¼ G
jGj with G being a fingerprint vector that describes the

atomic environment of all atoms in the unit cell for a given
configuration, Nat

β is the number of atoms in configuration β. In
this work, for the definition of atomic environment, we use the
well-established atom-centered symmetry functions of Behler and

Fig. 4 Phonon dispersion at equilibrium and deformed geometries. The phonon dispersion along the high symmetry lines of diamond and
graphene is reported in a–c and d–f, respectively. The value at the top of each graph represent the percentage of expansion (positive) or
compression (negative) of the lattice parameter. The dotted black line is the maximum frequency in THz at the Γ point at equilibrium lattice
parameter.
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Parrinello44, with modifications by refs. 45,46. This definition is also
used to describe the input to the neural network architecture. (see
“Methods” for a detail description of the descriptor vectors and
their use in neural network training.)
Then, we construct a dataset by considering only configurations

within a given cutoff distance D from this reference. Following this
strategy we build four datasets, three of which are referenced
from cubic diamond with D values of 0.05, 0.10, and 0.15; the
fourth one is referenced from either cubic diamond or graphite
with D= 0.05 (denoted by D12). For each D, 20% of the dataset is

set aside for validation and the remaining 80% is used for training.
We train four different NNPs on these four sets from scratch, and
test each on the respective validation datasets.
In Fig. 7a, we report the training and validation RMSE in energy

prediction as the cutoff distance D from the reference structure
increases. We show that an RMSE as low as 2.4 (2.5) meV/atom for
training (validation) can be obtained when training and validation
configurations are very similar, i.e., within a distance of 0.05 from
the diamond reference. However, the prediction error of this NNP
dramatically increases as it gets tested on structures farther in the

Fig. 5 Phonon dispersion of graphite. The phonon dispersion along the high symmetry lines is reported for a an NNP trained with the whole
dataset at the last iteration, b an NNP retrained with the whole dataset but with the minimization of the relative error on forces, and c an NNP
trained with all the data within D= 0.05 from diamond and graphite (D12, as described in “Discussion”). The small imaginary frequencies are
lifted by modifying the NNP training loss function, or by training on data close to graphite in structure.
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input space, to as high as an RMSE of 473 meV/atom. This is a
confirmation of the common observation that the prediction error
of a neural network is strongly dependent on the similarity of
training and test environments47. On the other hand, when the
model is trained and tested using the complete set, a prediction
RMSE of 22.1 meV/atom is obtained for energy, while, for the
configurations within D= 0.05 from diamond, the prediction
RMSE is still considerably small, 7.7 meV/atom. The analysis for
forces follows the same trend as energies. The RMSE values for
energies and forces are given in the Supplementary Table I.
Hence, it can be deduced that, for a fixed network architecture,

a trade-off must be struck between having small error on
configurations similar to a reference structure, and obtaining
reliable predictions for general configurations from the full
potential energy surface. The other entries in these tables confirm
this analysis: the more diverse the training set is, the more robust
is the resulting potential outside its training basin. Therefore, for a
reliable NNP for multiple C polymorphs, as the one targeted here,
a diverse training set from a wide region of the potential energy
surface is necessary.
In summary, in this work, we have presented a self-consistent

technique for generating an accurate and transferable NNP. Since
neural networks encode the physics of a system into their
parametrization through data, the dataset plays a crucial role in
the resulting NNP performance. The method described in this

work achieves a comprehensive dataset via balanced integration
of evolutionary algorithm, unsupervised machine learning in the
form of clustering, and MD. As the training dataset is central to all
machine learning models, we believe this generation method may
be adopted by and would be beneficial to other ML approaches
as well.
The distance-based analysis also gives an a posteriori measure

of the profound diversity of the final dataset achieved via the self-
consistent method. MD together with EA and clustering success-
fully explores a wide range of configurations on equal footing so
that the dataset shown in Fig. 7c covers energy and volume
landscape rather homogeneously. This is in line with the
observation that at each iteration dataset diversity increases and
validation RMSE may also increase since the network is tasked
with a more complex functional approximation problem.
The presented workflow requires minimum human interven-

tion. As the potential is iteratively improved, even rough starting
models could be utilized for the very first step, and we have
shown that the converged potential does not carry the limitations
of the initial model. Therefore, not only this workflow is ready for
high-throughput automation schemes as envisioned in future of
experimentation but it is also robust with respect to lack of
previous information about a system, as is often the case with
novel materials.

Fig. 6 Performance of the NNP on amorphous phases of carbon. a Radial distribution function for liquid (left) and amorphous (right) carbon,
for our NNP and Tersoff potential, at increasing densities (top to bottom). b Percentage of tetrahedrally coordinated atoms in amorphous
carbon structures as a function of density, comparing NNP with rVV10 and LDA-level, and Tersoff potential to results taken from ref. 21 for GAP
and screened Tersoff potentials, as well as experimental results from refs. 42,43. c Young modulus of amorphous carbon as a function of density
for NNP at rVV10 level and Tersoff, compared to results taken from ref. 21 for GAP and screened Tersoff potentials, as well as experimental
results from refs. 76,77. Error bars represent standard deviation over ten random initialization of particle velocities of the melt-quench cycles at
each density.
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Many new materials with practical applications can be expected
to be multicomponent systems. As the phase space of possible
compounds grows larger and wildly unexplored, truly automated
and unbiased approaches for an efficient exploration will become
essential. We believe that our dataset generation approach (which
can be coupled to any other ML approximator with multi-
component capability, e.g., ref. 48) would be particularly suited to
such systems. The workflow and the underlying neural network49

and electronic structure codes are publicly available and are open-
source.
The self-consistent NNP generation procedure is entirely system

independent and we demonstrated its successful application to
the challenging case of carbon for which classical and machine-
learnt potentials are abundant in literature. We show that for
diamond, graphite, and graphene phases, NNP reported in this
work performs considerably better than Tersoff, a classical

Fig. 7 The relationship between model transferability and the similarity of training and validation datasets. a Validation error of networks
trained on different datasets as a function of the distance of the validation set from diamond. Numerical values are given in the
Supplementary Table I for energies and forces. b Representative structures at given distances from diamond, the reference structure. The
structures at 0.05 or lower are recognizably related to the reference, while at 0.10 and 0.15 compressed and/or defected layered structures are
visible. At 0.30 and above, configurations with several double bonds and carbon chains appear. c Energy per atom as a function of volume for
structures in the dataset, colored according to their distance cutoff D from diamond. The black dot corresponds to the reference diamond
structure. The complete dataset includes structures with larger volume that are omitted here for clarity. The complete volume range is given in
the Supplementary Fig. 10.
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potential, and overall better than the existing machine-learnt
potentials for structural and elastic properties. Recently, a new
GAP model trained on a large dataset with wide range of
polymorphs was published50. Based on our reproduction of ab
initio reference and ML results of this model, a preliminary
comparison is given in the Supplementary Fig. 11 and Supple-
mentary Table II, and it is found that NNP performs as well as or
better for all properties studied.
When predicting graphite phonon dispersion, NNP resulted in

very good agreement for the majority of the modes, yet predicted
instability for the very soft modes that relate to interlayer
interaction. We have traced this behavior to the accuracy
requirement in predicting such small forces. To increase accuracy
using a fixed neural network architecture, we built the training set
only with structures that are in the vicinity of graphite according
to a fingerprint-based distance measure. The resulting potential
provided accurate phonon frequencies but it showed poor
generalization to a wider range of structures, compared to a
more comprehensive potential trained on the entire dataset. This
example highlights the need for a procedure to standardize the
accuracy measure of NNPs and a more pressing need to build
error estimate measures into the process of generating NNPs.

METHODS
Evolutionary algorithm for configuration space search
In iterative schemes, having a good starting point often means that a
smaller number of iterations is needed to reach convergence. In a realistic
use case scenario of NNPs, it is reasonable to expect that only a moderately
well-fitting potential would be available as a starting point. To demonstrate
this, we start the self-consistent cycle using a Li–C ReaxFF model to
generate the initial configurations. This model is fit to DFT results with vdW
correction and its details are set to describe well Li–C environments and
defective graphite but not the wide range of solid C polymorphs
considered in this work. We generate the initial configurations with 16
and 24 carbon atoms per unit cell at 0, 10, 20, 30, 40, and 50 GPa via EA as
implemented in USPEX51,52. At each pressure, we start with a population of
30 (50) randomly generated structures for the 16 (24) atoms per unit cell,
and evolve it through the following evolutionary operations with the given
ratios: heredity (two parent structures are combined) 50%, mutation (a
distortion matrix is applied to a structure) 25%, or by generating new
random structures 25%.
At each generation, structures are optimized in five successive steps: (a)

constant pressure and temperature MD at 0.1 GPa and 50 K, respectively,
for 0.3 ps with time step of 0.1 fs, (b) relaxation of cell parameters and
internal coordinates until force components are <0.26 eVÅ−1, (c) constant
pressure and temperature MD at 0.1 GPa and 50 K, respectively, for 0.3 ps
with time step of 0.1 fs, (d) relaxation of cell parameters and internal
coordinates until force components are <0.026 eVÅ−1, and (e) a final
relaxation of cell parameters and internal coordinates until force
components are <0.0026 eVÅ−1.
Only the 70% most energetically stable parents were allowed to

participate in the process of creating the new generation. In the heredity
step, only sufficiently distinct structures (whose cosine distance, as defined
in the next section, is greater than a given threshold) are considered as
parents. This threshold is fixed at 0.008 in the first iteration, as it is small
enough to allow deformed structures from the same polymorph to be
parents. In order to enhance the diversity of the structures in the
subsequent iterations, the threshold is increased to 0.05 so that the
parents can be expected to be from different polymorphs.
Each structure search is evolved up to a maximum of 50 generations at

the first iterations and 30 in the subsequent ones. The configuration space
search performed this way produces a wide range of sp2, sp3 and mixture
of sp2 and sp3 structures, including defective layered structures.

Clustering
Initially, an unsupervised, bottom-up, distance-based hierarchical cluster-
ing approach with single linkage is used on all structures obtained with EA
to identify the unique polymorphs. In the later iterations, clustering is
applied only to those structures where NNP prediction differs from DFT
ground-truth energy by more than 5meV/atom. That way, polymorphs

that are already well described by NNP are not over-sampled. During
clustering, to measure the similarity between structures, we use the
fingerprint-based cosine distance defined in refs. 53,54. In the case of a
single species in the unit cell, and in its discretized form, the fingerprint of
a configuration becomes:

F½k� ¼ 1
2

X
i2cell

X
j

erf ðkþ1ÞΔ�Rijffiffi
2

p
σ

h i
� erf kΔ�Rijffiffi

2
p

σ

h i
4πR2ij

N2

V Δ
� 1 (2)

where the first sum runs over all atoms i in the unit cell and the second
sum runs over all atoms j within a spherical cutoff radius Rmax, and Rij is the
distance between atoms i and j. The numerator describes the integral of a
Gaussian density of width sigma over a bin of size Δ. N is the number of
atoms in the unit cell and V is the unit cell volume.
The cosine distance between structures 1 and 2 is defined as:

Dcosineð1; 2Þ ¼ 1
2

1� F1 � F2
jF1jjF2j

� �
: (3)

The dimension of the F-vector is set to Rmax=Δ ¼ 125 with Rmax ¼ 10 Å and
Δ= 0.08 in this work. Two configurations closer to one another than a
distance threshold are determined to belong to the same cluster. In this
work the threshold is tuned to yield ~100–150 clusters at each step, which
results in affordable computational cost for the remaining calculations of
the self-consistent cycle.

Molecular dynamics (MD)
We manually select a representative structure from each cluster and
perform a 0.5-ns classical NPT MD simulation with Nose–Hoover
thermostat and barostat. In these simulations, the external conditions of
pressure and temperature are ramped up from −50 GPa at 100 K, to
50 GPa at 1000 K in the course of 0.5 ns. The characteristic relaxation times
of the thermostat and barostat are chosen as 50 and 100 fs, respectively. By
sampling a snapshot of the dynamics every 5 ps, 100 configurations are
selected. All MD simulations are performed with LAMMPS package55. In
addition, 440 randomly selected graphene atomic configurations from the
libAtoms repository36 are added to the selection. This set constitutes the
set of structures where ab initio total energy calculations are then
performed and added to the training set.

First principles calculations
The first principles calculations performed on all the structures visited
during EA configuration space search and MD refinement described earlier
employ the following parameters: plane wave basis set kinetic energy
cutoff for wavefunctions and charge density is 80 and 480 Ry, respectively.
The rVV1056 exchange-correlation functional that incorporates non-local
vdW correlations is employed. A Brillouin zone sampling with resolution of
0.034 × 2πÅ−1 for the 3D carbon structures and 0.014 × 2πÅ−1 for
graphene is used. These parameters are found to yield 1mRy/atom
precision on diamond, graphite, and graphene. All DFT calculations were
performed with the Quantum ESPRESSO package57,58. Elastic properties are
computed through the thermopw framework59 while vibrational proper-
ties are obtained with PHON package60.
In the first self-consistent iteration, the training set is made up of all

generated structures lying within 10 eV from the lowest energy one. This
results in a total of ~16,000 configurations. In the subsequent iterations of
the self-consistent procedure, we use all configurations whose energy per
atom is within 1.2 eV of the lowest one, these are added to the previously
selected configurations, amounting to a total of about 30,000 configura-
tions in the second and 60,000 configurations in the third and final
iteration. From these configurations, 20% was set aside for validation and
the remaining 80% was used in the NNP training.

Neural network architecture
In this work, we adopt the Behler–Parrinello approach to atomistic neural
networks44 where the total energy of a system of N atoms is defined as the
sum of atomic energy contributions

E ¼
XN
i¼1

EiðGiÞ; (4)

where Ei is the energy contribution of an atom i, and Gi is its local
environment descriptor vector. As described in detail in the next section,
we choose descriptors with 144 components per atomic environment.
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The contribution of an atom to the total energy is obtained by feeding
its environment descriptor to the feed-forward all-to-all-connected
neural network. Here we build a network with two hidden layers, with
64 and 32 nodes for the first and second layer, respectively, both with
Gaussian activation function, and a single-node output layer with linear
activation. The resulting network has a total of 11,393 parameters, i.e.,
(144 × 64)+ (64 × 32)+ (32 × 1)= 11,296 weights and 64+ 32+ 1= 97
biases. The energy of each atom is then summed to obtain the total
energy of the configuration. The force on each atom can be obtained
analytically

Fi ¼ �
X
j

X
μ

∂Ej
∂Gjμ

∂Gjμ

∂Ri
(5)

where the atom index, j, runs over all the atoms within the cutoff
distance of atom i, and index μ runs over the descriptor components.
During training, the weight and bias parameters W, are optimized with

the Adam algorithm61 using gradients obtained by randomly selected
subsets (minibatches) of data. The loss function of this stochastic
optimization problem is defined as the sum of two contributions: one
using the total energy value (Eq. (6)) and one using the force on each atom
(Eq. (7)):

LEðWÞ ¼
X

c2batch
EDFTc � EcðWÞ� �2 þ exp a tanh

1
a

X
c2batch

EDFTc � EcðWÞ
Nc

� �2
 !" #

;

(6)

where EDFTc is the ground-truth total energy obtained via DFT and Ec is the
NN prediction for total energy of a given configuration c, consisting of
Nc atoms in the unit cell. The second part of this equation exponentially
penalizes outliers while keeping the exponent normalized; a is a constant
that allows to tune this penalty, a= 5 is used in this study. The force
contribution to the loss is given by:

LFðWÞ ¼ γF
X

c2batch

XNc

i¼1

FDFTi � Fi
�� ��2; (7)

where for any atom i of configuration c, FDFTi is the ground-truth force
obtained via DFT, and Fi is the NN prediction for it. γF is a user-defined
parameter that controls the scale of this loss component. The results
reported are obtained with γF equals 0.5. The relative error loss highlighted
in “Results” is defined as

LFðWÞ ¼ γF
X

c2batch

1
Nc

XNc

i¼1

FDFTi � Fi
�� ��2
FDFTi

�� ��2 þ f 20
; (8)

where f0 is a regularizer constant, chosen as f0= 260meVÅ−1 in this work.
An L2-norm regularization term is also added with a small coefficient γR=

10−4 to prevent weights from becoming spuriously large

LRðWÞ ¼ γR
jWj2
2

: (9)

The total loss is thus defined as:

LðWÞ ¼ LEðWÞ þ LFðWÞ þ LRðWÞ: (10)

All models are trained starting from random weights and a starting
learning rate α0= 0.001. The learning rate is decreased exponentially with
optimization step t following the relationship α(t)= α0r

t/τ with decay rate r
= 0.96 and the decay step τ= 3200. A batch size of 128 data points is used
throughout the study.

Atomic environment descriptors
We use Behler–Parrinello symmetry functions44 as local atomic descriptors.
These functions include a two body and a three-body term, referred to as
radial and angular descriptor, respectively. We use a modified version of
the original angular descriptor45 as implemented and detailed in PANNA
package46. The radial descriptor function is defined as:

GRad
i ½s� ¼

X
j≠i

e�η Rij�Rsð Þ2 f cðRijÞ; (11)

where η and a set of Gaussian-centers Rs are user-defined parameters of
the descriptor. The sum over j runs over all atoms whose distance Rij from
the central atom i is within the cutoff distance Rc. The cutoff function, fc is

defined as:

f cðRijÞ ¼
1
2 cos πRij

Rc

� 	
þ 1

h i
Rij � Rc

0 Rij > Rc:

(
(12)

The angular part of the descriptor with central atom i is defined as:

GAng
i ½s� ¼ 21�ζ

P
j;k≠i

1þ cosðθijk � θsÞ
� �ζ

´ e�η Rij=2þRik=2�Rsð Þ2

´ f cðRijÞf cðRikÞ:

(13)

The sum runs over all pairs of neighbors of atom i, indexed as j and k,
with distances Rij and Rik within the cutoff radius Rc, forming an angle θijk
with it. Here η, ζ, and the sets of θs and Rs are the user-defined parameters
of the descriptor.
We note that the descriptor as written in Eq. (13) has discontinuous

derivative with respect to atomic positions when atoms are collinear. To
restore the continuity, we replace the cosðθijk � θsÞ term with the following
expression:

2
cosðθijkÞ cosðθsÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos ðθijkÞ2 þ ϵ sin ðθsÞ2

q
sinðθsÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ sin ðθsÞ2

q (14)

where we introduce a small normalization parameter, ϵ, such that the
expression approaches cosðθijk � θsÞ in the limit of ϵ→ 0. In this work, ϵ=
0.001 was used, while values between 0.001 and 0.01 were found to yield
stable dynamics and equivalent network potentials for any practical
purpose.
The radial descriptors are parametrized with η= 16.0Å−2, while 32

equidistant Gaussian centers, Rs, are distributed between 0.5 and 4.6Å. For
the angular part η= 10.0Å−2, ζ= 23.0, 8 equidistant Rs are distributed
between 0.5 and 4.0Å and 14 θs are chosen between π/28 and 27π/28 with
spacing π/14. The cutoff Rc is 4.6Å for radial and 4.0Å for the angular
descriptors, respectively. The resulting descriptor has a total of 32+ 14 × 8=
144 components per atomic environment.

DATA AVAILABILITY
The neural network potential described in this work is released in PANNA46 format
compatible with several molecular dynamics packages via OPENKIM62. A native
LAMMPS plugin version is also given in the Supplementary Material. The training and
test data are available from the corresponding authors upon reasonable request.

Received: 24 May 2020; Accepted: 10 February 2021;

REFERENCES
1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864

(1964).
2. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and corre-

lation effects. Phys. Rev. 140, A1133–A1138 (1965).
3. Chandrasekaran, A. et al. Solving the electronic structure problem with machine

learning. Nano Lett. 5, 22 (2019).
4. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an

accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120,
145301 (2018).

5. Onat, B., Cubuk, E. D., Malone, B. D. & Kaxiras, E. Implanted neural network
potentials: application to li-si alloys. Phys. Rev. B 97, 094106 (2018).

6. Kolsbjerg, E. L., Peterson, A. A. & Hammer, B. Neural-network-enhanced evolu-
tionary algorithm applied to supported metal nanoparticles. Phys. Rev. B 97,
195424 (2018).

7. Cooper, A. M., Kästner, J., Urban, A. & Artrith, N. Efficient training of ann potentials
by including atomic forces via taylor expansion and application to water and a
transition-metal oxide. npj Comput. Mater. 6, 54 (2020).

8. Thompson, A., Swiler, L., Trott, C., Foiles, S. & Tucker, G. Spectral neighbor analysis
method for automated generation of quantum-accurate interatomic potentials. J.
Comput. Phys. 285, 316–330 (2015).

9. Zong, H., Pilania, G., Ding, X., Ackland, G. J. & Lookman, T. Developing an
interatomic potential for martensitic phase transformations in zirconium by
machine learning. npj Comput. Mater. 4, 48 (2018).

Y. Shaidu et al.

11

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    52 



10. Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data-driven materials science:
status, challenges, and perspectives. Adv. Sci. 6, 1900808 (2019).

11. Nyshadham, C. et al. Machine-learned multi-system surrogate models for mate-
rials prediction. npj Comput. Mater. 5, 51 (2019).

12. Kostiuchenko, T., Körmann, F., Neugebauer, J. & Shapeev, A. Impact of lattice
relaxations on phase transitions in a high-entropy alloy studied by machine-
learning potentials. npj Comput. Mater. 5, 55 (2019).

13. Deng, Z., Chen, C., Li, X.-G. & Ong, S. P. An electrostatic spectral neighbor analysis
potential for lithium nitride. npj Comput. Mater. 5, 75 (2019).

14. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and
applications of machine learning in solid-state materials science. npj Comput.
Mater. 5, 83 (2019).

15. Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O. Accurate and transferable
multitask prediction of chemical properties with an atoms-in-molecules neural
network. Sci. Adv. 5, eaav6490 (2019).

16. Tersoff, J. Empirical interatomic potential for carbon, with applications to amor-
phous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988).

17. van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. Reaxff: a reactive force
field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

18. Rappe, A. K. & Goddard, W. A. Charge equilibration for molecular dynamics
simulations. J. Phys. Chem. 95, 3358–3363 (1991).

19. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Graphite-diamond
phase coexistence study employing a neural-network mapping of the ab initio
potential energy surface. Phys. Rev. B 81, 100103 (2010).

20. Koukaras, E. N., Kalosakas, G., Galiotis, C. & Papagelis, K. Phonon properties of
graphene derived from molecular dynamics simulations. Sci. Rep. 5, 12923
(2015).

21. Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for
amorphous carbon. Phys. Rev. B 95, 094203 (2017).

22. Wen, M. & Tadmor, E. B. Hybrid neural network potential for multilayer graphene.
Phys. Rev. B 100, 195419 (2019).

23. Artrith, N. & Behler, J. High-dimensional neural network potentials for metal
surfaces: a prototype study for copper. Phys. Rev. B 85, 045439 (2012).

24. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized
interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).

25. Artrith, N., Urban, A. & Ceder, G. Constructing first-principles phase diagrams of
amorphous lixsi using machine-learning-assisted sampling with an evolutionary
algorithm. J. Chem. Phys. 148, 241711 (2018).

26. Zhang, L., Lin, D.-Y., Wang, H., Car, R. & E, W. Active learning of uniformly accurate
interatomic potentials for materials simulation. Phys. Rev. Mater. 3, 023804 (2019).

27. Rowe, P., Csányi, G., Alfè, D. & Michaelides, A. Development of a machine learning
potential for graphene. Phys. Rev. B 97, 054303 (2018).

28. Bernstein, N., Csányi, G. & Deringer, V. L. De novo exploration and self-guided
learning of potential-energy surfaces. npj Comput. Mater. 5, 99 (2019).

29. Sivaraman, G. et al. Machine-learned interatomic potentials by active learning:
amorphous and liquid hafnium dioxide. npj Comput. Mater. 6, 104 (2020).

30. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable
interatomic potentials. Multiscale Model Simul 14, 1153–1173 (2016).

31. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic
potentials. J. Phys. Chem. A 124, 731–745 (2020).

32. Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).
33. Bull, C. L. et al. ζ-Glycine: insight into the mechanism of a polymorphic phase

transition. IUCrJ 4, 569–574 (2017).
34. Artrith, N. & Urban, A. An implementation of artificial neural-network potentials

for atomistic materials simulations: Performance for tio2. Comput. Mater. Sci. 114,
135–150 (2016).

35. Deringer, V. L., Csányi, G. & Proserpio, D. M. Extracting crystal chemistry from
amorphous carbon structures. ChemPhysChem 18, 873–877 (2017).

36. Data repository for gaussian approximation potential. http://www.libatoms.org/
pub/Home/DataRepository. (2018).

37. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

38. Jacobson, P. & Stoupin, S. Thermal expansion coefficient of diamond in a wide
temperature range. Diam. Relat. Mater. 97, 107469 (2019).

39. Pozzo, M. et al. Thermal expansion of supported and freestanding graphene:
lattice constant versus interatomic distance. Phys. Rev. Lett. 106, 135501
(2011).

40. Evans, D. J. & Holian, B. L. The nose-hoover thermostat. J. Chem. Phys. 83,
4069–4074 (1985).

41. Pastewka, L., Klemenz, A., Gumbsch, P. & Moseler, M. Screened empirical bond-
order potentials for Si-C. Phys. Rev. B 87, 205410 (2013).

42. Fallon, P. J. et al. Properties of filtered-ion-beam-deposited diamondlike carbon
as a function of ion energy. Phys. Rev. B 48, 4777–4782 (1993).

43. Schwan, J. et al. Tetrahedral amorphous carbon films prepared by magnetron
sputtering and dc ion plating. J. Appl. Phys. 79, 1416–1422 (1996).

44. Behler, J. & Parrinello, M. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

45. Smith, J. S., Isayev, O. & Roitberg, A. E. Ani-1: an extensible neural network
potential with dft accuracy at force field computational cost. Chem. Sci. 8,
3192–3203 (2017).

46. Lot, R., Pellegrini, F., Shaidu, Y. & Küçükbenli, E. Panna: Properties from artificial
neural network architectures. Comput. Phys. Commun. 256, 107402 (2020).

47. Bernstein, J., Vahdat, A., Yue, Y. & Liu, M.-Y. On the distance between two
neural networks and the stability of learning, in Advances in Neural Information
Processing Systems, eds: H. Larochelle and M. Ranzato and R. Hadsell and M. F.
Balcan and H. Lin, 33, pp 21370-21381 (Curran Associates, Inc., 2020) https://
proceedings.neurips.cc/paper/2020/file/f4b31bee138ff5f7b84ce1575a738f95-
Paper.pdf.

48. Cusentino, M. A., Wood, M. A. & Thompson, A. P. Explicit multielement extension
of the spectral neighbor analysis potential for chemically complex systems. J.
Phys. Chem. A 124, 5456–5464 (2020).

49. Panna: properties from artificial neural networks. https://gitlab.com/PANNAdevs/
panna. (2020).

50. Rowe, P., Deringer, V. L., Gasparotto, P., Csányi, G. & Michaelides, A. An accurate
and transferable machine learning potential for carbon. J. Chem. Phys. 153,
034702 (2020).

51. Glass, C. W., Oganov, A. R. & Hansen, N. Uspex–evolutionary crystal structure
prediction. Comput. Phys. Commun. 175, 713–720 (2006).

52. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolu-
tionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

53. Oganov, A. R. & Valle, M. How to quantify energy landscapes of solids. J. Chem.
Phys. 130, 104504 (2009).

54. Valle, M. & Oganov, A. R. Crystal fingerprint space—a novel paradigm for
studying crystal-structure sets. Acta Crystallogr. A 66, 507–517 (2010).

55. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comput. Phys. 117, 1–19 (1995).

56. Sabatini, R., Gorni, T. & de Gironcoli, S. Nonlocal van der waals density functional
made simple and efficient. Phys. Rev. B 87, 041108 (2013).

57. Giannozzi, P. et al. Quantum espresso: a modular and open-source software
project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502
(2009).

58. Giannozzi, P. et al. Advanced capabilities for materials modelling with q uantum
espresso. J. Phys. Condens. Matter 29, 465901 (2017).

59. thermo_pw: ab-initio computation of material properties. https://dalcorso.github.
io/thermo_pw/. (2020).

60. Alfè, D. Phon: a program to calculate phonons using the small displacement
method. Comput. Phys. Commun. 180, 2622–2633 (2009).

61. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. https://arxiv.
org/abs/1412.6980 (2014).

62. Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A. The potential of
atomistic simulations and the knowledgebase of interatomic models. JOM 63, 17
(2011).

63. Towns, J. et al. Xsede: accelerating scientific discovery. Comput. Sci. Eng. 16,
62–74 (2014).

64. McSkimin, H. J. & Andreatch, P. Elastic moduli of diamond as a function of
pressure and temperature. J. Appl. Phys. 43, 2944–2948 (1972).

65. Zouboulis, E. S., Grimsditch, M., Ramdas, A. K. & Rodriguez, S. Temperature
dependence of the elastic moduli of diamond: a Brillouin-scattering study. Phys.
Rev. B 57, 2889–2896 (1998).

66. Bosak, A., Krisch, M., Mohr, M., Maultzsch, J. & Thomsen, C. Elasticity of single-
crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B 75, 153408
(2007).

67. Mohr, M. et al. Phonon dispersion of graphite by inelastic x-ray scattering. Phys.
Rev. B 76, 035439 (2007).

68. Seldin, E. J. & Nezbeda, C. W. Elastic constants and electron-microscope obser-
vations of neutron-irradiated compression-annealed pyrolytic and single-crystal
graphite. J. Appl. Phys. 41, 3389–3400 (1970).

69. Cooper, D. R. et al. Experimental review of graphene. ISRN Condens. Matter Phys.
2012, 1–56 (2012).

70. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and
intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

71. Lee, J.-U., Yoon, D. & Cheong, H. Estimation of young’s modulus of graphene by
raman spectroscopy. Nano Lett. 12, 4444–4448 (2012).

72. Curtarolo, S. et al. Aflowlib.org: a distributed materials properties repository from
high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

73. de Pablo, J. J., Jones, B., Kovacs, C. L., Ozolins, V. & Ramirez, A. P. The materials
genome initiative, the interplay of experiment, theory and computation. Curr.
Opin. Solid State Mater. Sci. 18, 99–117 (2014).

74. Draxl, C. & Scheffler, M. Nomad: the fair concept for big data-driven materials
science. MRS Bull. 43, 676–682 (2018).

Y. Shaidu et al.

12

npj Computational Materials (2021)    52 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://www.libatoms.org/pub/Home/DataRepository
http://www.libatoms.org/pub/Home/DataRepository
https://proceedings.neurips.cc/paper/2020/file/f4b31bee138ff5f7b84ce1575a738f95-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4b31bee138ff5f7b84ce1575a738f95-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4b31bee138ff5f7b84ce1575a738f95-Paper.pdf
https://gitlab.com/PANNAdevs/panna
https://gitlab.com/PANNAdevs/panna
https://dalcorso.github.io/thermo_pw/
https://dalcorso.github.io/thermo_pw/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980


75. Raju, M., Ganesh, P., Kent, P. R. C. & van Duin, A. C. T. Reactive force field study of
li/c systems for electrical energy storage. J. Chem. Theory Comput. 11, 2156–2166
(2015).

76. Schultrich, B., Scheibe, H.-J., Grandremy, G., Drescher, D. & Schneider, D. Elastic
modulus as a measure of diamond likeness and hardness of amorphous carbon
films. Diam. Relat. Mater. 5, 914–918 (1996).

77. Schultrich, B., Scheibe, H.-J., Drescher, D. & Ziegele, H. Deposition of superhard
amorphous carbon films by pulsed vacuum arc deposition. Surf. Coat. Technol. 98,
1097–1101 (1998).

ACKNOWLEDGEMENTS
The work of E. Ka and E. Kü was supported by a DOE grant, BES Award DE-SC0019300.
E. Kü, F.P., and S.d.G. are grateful for the financial support by European Union’s
Horizon 2020 research and innovation program under Grant agreement No. 676531
(project E-CAM). S.d.G. also acknowledges EU funding under Grant agreement No.
824143 (project MaX). This work used the high-performance computing resources of
CINECA, SISSA, and FASRC Cannon cluster supported by the FAS Division of Science
Research Computing Group at Harvard University. This work also used the Extreme
Science and Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation Grant number ACI-154856263, specifically it used
Stampede2 at TACC through allocation TG-DMR120073.

AUTHOR CONTRIBUTIONS
E. Kü and S.d.G. designed and planned the study. E. Kü, F.P., and S.d.G. supervised all
aspects of the project. R.L., F.P., Y.S., and E. Kü implemented the methodology into
PANNA code, and performed extensive tests. Y.S. performed DFT calculations and
constructed the ANN potentials. Y.S., F.P., S.d.G., and E. Kü analyzed the results. Y.S., E.
Kü and S.d.G. led the manuscript writing. All authors contributed to discussions
throughout the study and commented on the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-021-00508-6.

Correspondence and requests for materials should be addressed to E.K. or S.d.G.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Y. Shaidu et al.

13

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    52 

https://doi.org/10.1038/s41524-021-00508-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A systematic approach to generating accurate neural network potentials: the case of carbon
	Introduction
	Results
	Self-consistent training and validation
	Structural and elastic properties
	Vibrational properties
	Amorphous carbon structures

	Discussion
	Methods
	Evolutionary algorithm for configuration space search
	Clustering
	Molecular dynamics (MD)
	First principles calculations
	Neural network architecture
	Atomic environment descriptors

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




